Protecting and Engaging vulnerable populations in the development of predictive Models in primary healthcare for inclusive, diverse and equitable AI (PREMIA)

This project aims to carry out an environmental scan of AI-based predictive models in primary health care in the published literature and by conducting interviews with key stakeholders; to form focus groups including experts in clinical, ethical and experiential knowledge of vulnerable populations who will work to identify and assess biases in predictive models; to implement recommendations from the working group into a model, gather experience from developers and users, assess acceptability, feasibility and relevance of parameters and fidelity of implementation of recommendations.

Chercheuse principale

Cochercheuses et cochercheurs

Publications

Risk of Bias Mitigation for Vulnerable and Diverse Groups in Community-Based Primary Health Care Artificial Intelligence Models: Protocol for a Rapid Review

Maxime Sasseville, Steven Ouellet, Caroline Rhéaume, Vincent Couture, Philippe Després, Jean-Sébastien Paquette, Karine Gentelet, David Darmon, Marie-Pierre Gagnon

La littérature actuelle identifie plusieurs avantages potentiels des modèles d'intelligence artificielle pour la santé des populations et l'efficacité des systèmes de santé. Cependant, il existe un manque de compréhension sur la manière dont le risque de biais est pris en compte dans le développement des algorithmes d' ...

Stay up to date with the latest news!

Receive updates from the community, upcoming events, and research opportunities.