This project aims to carry out an environmental scan of AI-based predictive models in primary health care in the published literature and by conducting interviews with key stakeholders; to form focus groups including experts in clinical, ethical and experiential knowledge of vulnerable populations who will work to identify and assess biases in predictive models; to implement recommendations from the working group into a model, gather experience from developers and users, assess acceptability, feasibility and relevance of parameters and fidelity of implementation of recommendations.

Chercheuse principale
Marie-Pierre Gagnon
Full Professor
Faculty of Nursing
Université Laval
Cochercheuses et cochercheurs
Philippe Després
Full Professor
Department of Physics, Engineering Physics and Optics
Faculty of Science and Engineering
Université Laval
Karine Gentelet
Associate Professor
Department of Social Sciences
Université du Québec en Outaouais (UQO)
Vincent Couture
Assistant Professor
Faculty of Nursing
Université Laval
Maxime Sasseville
Assistant Professor
Faculty of Nursing
Université Laval
Caroline Rhéaume
Associate Professor and Physician-Scientist
Department of Family Medicine and Emergency Medicine
Faculty of Medicine
Université Laval
Publications
Risk of Bias Mitigation for Vulnerable and Diverse Groups in Community-Based Primary Health Care Artificial Intelligence Models: Protocol for a Rapid Review
La littérature actuelle identifie plusieurs avantages potentiels des modèles d'intelligence artificielle pour la santé des populations et l'efficacité des systèmes de santé. Cependant, il existe un manque de compréhension sur la manière dont le risque de biais est pris en compte dans le développement des algorithmes d' ...